Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3391, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649678

ABSTRACT

Topological spin textures are characterized by magnetic topological charges, Q, which govern their electromagnetic properties. Recent studies have achieved skyrmion bundles with arbitrary integer values of Q, opening possibilities for exploring topological spintronics based on Q. However, the realization of stable skyrmion bundles in chiral magnets at room temperature and zero magnetic field - the prerequisite for realistic device applications - has remained elusive. Here, through the combination of pulsed currents and reversed magnetic fields, we experimentally achieve skyrmion bundles with different integer Q values - reaching a maximum of 24 at above room temperature and zero magnetic field - in the chiral magnet Co8Zn10Mn2. We demonstrate the field-driven annihilation of high-Q bundles and present a phase diagram as a function of temperature and field. Our experimental findings are consistently corroborated by micromagnetic simulations, which reveal the nature of the skyrmion bundle as that of skyrmion tubes encircled by a fractional Hopfion.

2.
Bioresour Technol ; 399: 130574, 2024 May.
Article in English | MEDLINE | ID: mdl-38471631

ABSTRACT

Widespread use of nanomaterials raises concerns. The underlying mechanism by which graphene oxide (GO) nanoparticles causes poor settleability of activated sludge remains unclear. To explore this mechanism, three reactors with different GO concentrations were established. Extended Derjaguin-Landau-Verwey-Overbeek theory indicated that GO destroyed the property of extracellular polymeric substances (EPS), increasing the energy barrier between bacteria. Low levels of uronic acid and hydrogen bonding in exopolysaccharide weakened the EPS gelation increasing aggregation repulsion. Lager amounts of hydrophilic amino acid and looser structure of extracellular proteins for exposing inner hydrophilic groups significantly contributed to the hydrophilicity of EPS. Both changes implied deterioration in EPS structure under GO stress. Metagenome demonstrated a decrease in genes responsible for capsular polysaccharide colonization and genes regulated the translocation of loose proteins were increased, which increased repulsion between bacteria. This study elucidated that changes in EPS secretion under GO exposure are the underlying causes of poor settleability.


Subject(s)
Extracellular Polymeric Substance Matrix , Graphite , Sewage/chemistry , Proteins
3.
Water Res ; 251: 121168, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38266439

ABSTRACT

Carbon sources are critical factors influencing bacterial bioaugmentation, however, the underlying mechanisms, particularly the metabolic characteristics of bioaugmented bacteria remain poorly understood. The bioaugmented bacterium Rhodococcus sp. BH4 secretes the quorum quenching (QQ) enzyme QsdA to disrupt the quorum sensing (QS) in the activated sludge (AS) process, reducing AS yield in-situ. This study investigated the carbon metabolic characteristics of BH4 and explored the effects on bioaugmentation with different influent carbon sources. Because of the absence of glucose-specific phosphoenol phosphotransferase system (PTS), BH4 prefers sodium acetate to glucose. However, the lactones produced during extracellular glucose metabolism enhance BH4 qsdA expression. Moreover, BH4 possess carbon catabolite repression (CCR), acetate inhibits glucose utilization. BH4 microbeads were added to reactors with different carbon sources (R1: sodium acetate; R2: glucose; R3: a mixture of sodium acetate and glucose) for in-situ AS yield reduction. During operation, AS reduction efficiency decreased in the following order: R1 > R3 > R2. R2 and R3 microbeads exhibited similar QQ activity to R1, with less BH4 biomass at 5 d. 13C labeling and Michaelis-Menten equation showed that, due to differences in the competitiveness of carbon sources, R1 BH4 obtained the most carbon, whereas R2 BH4 obtained the least carbon. Moreover, acetate inhibited glucose utilization of R3 BH4. Transcriptome analysis showed that R1 BH4 qsdA expression was the lowest, R2 BH4 was the most serious form of programmed cell death, and the R3 BH4 PTS pathway was inhibited. At 10 d, R1 BH4 biomass and microbead QQ activity were higher than that in R3, and the R2 BH4 lost viability and QQ activity. This study provides new insights into bioaugmentation from the perspectives of carbon source competitiveness, carbon metabolism pathways, and CCR.


Subject(s)
Quorum Sensing , Rhodococcus , Quorum Sensing/physiology , Carbon , Sodium Acetate , Sewage/microbiology , Glucose , Bioreactors/microbiology
4.
Nano Lett ; 24(5): 1587-1593, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38259044

ABSTRACT

Magnetic skyrmions in bulk materials are typically regarded as two-dimensional structures. However, they also exhibit three-dimensional configurations, known as skyrmion tubes, that elongate and extend in-depth. Understanding the configurations and stabilization mechanism of skyrmion tubes is crucial for the development of advanced spintronic devices. However, the generation and annihilation of skyrmion tubes in confined geometries are still rarely reported. Here, we present direct imaging of skyrmion tubes in nanostructured cuboids of a chiral magnet FeGe using Lorentz transmission electron microscopy (TEM), while applying an in-plane magnetic field. It is observed that skyrmion tubes stabilize in a narrow field-temperature region near the Curie temperature (Tc). Through a field cooling process, metastable skyrmion tubes can exist in a larger region of the field-temperature diagram. Combining these experimental findings with micromagnetic simulations, we attribute these phenomena to energy differences and thermal fluctuations. Our results could promote topological spintronic devices based on skyrmion tubes.

6.
Adv Mater ; 35(47): e2306117, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37668003

ABSTRACT

Magnetic skyrmions are spin swirls that possess topological nontriviality and are considered particle-like entities. They are distinguished by an integer topological charge Q. The presence of skyrmion bundles provides an opportunity to explore the range of values for Q, which is crucial for the advancement of topological spintronic devices with multi-Q properties. In this study, a new material candidate, Sr2 Co2 Fe28 O46 hexaferrite of the X-type, which hosts small dipolar skyrmions at room temperature and above is presented. By exploiting reversed magnetic fields from metastable skyrmion bubbles at zero fields, skyrmion-bubble bundles with different interior skyrmion/bubble numbers, topological charges, and morphologies at room temperature are incorporated. These experimental findings are consistently supported by micromagnetic simulations. These results highlight the versatility of topological spin textures in centrosymmetric uniaxial magnets, thereby paving the way for the development of room-temperature topological spintronic devices with multi-Q characteristics.

7.
Infect Dis Poverty ; 12(1): 72, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563679

ABSTRACT

BACKGROUND: In the normal life cycle of the parasite (Echinococcus multilocularis) that causes alveolar echinococcosis, domestic and wild carnivores act as definitive hosts, and rodents act as intermediate hosts. The presented study contributes to the research on the distribution and transmission pattern of E. multilocularis in China having identified sheep as an unusual intermediate host taking part in the domestic transmission of alveolar echinococcosis in Gansu Province, China. METHODS: From 2020 to 2021, nine whitish different cyst-like were collected from the liver of sheep in Gansu Province for examination. A near complete mitochondrial (mt) genome and selected nuclear genes were amplified from the cyst-like lesion for identification. To confirm the status of the specimen, comparative analysis with reference sequences, phylogenetic analysis, and network analysis were performed. RESULTS: The isolates displayed ≥ 98.87% similarity to E. multilocularis NADH dehydrogenase sub-unit 1 (nad1) (894 bp) reference sequences deposited in GenBank. Furthermore, amplification of the nad4 and nad2 genes also confirmed all nine samples as E. multilocularis with > 99.30% similarity. Additionally, three nuclear genes, pepck (1545 bp), elp-exons VII and VIII (566 bp), and elp-exon IX (256 bp), were successfully amplified and sequenced for one of the isolates with 98.42% similarity, confirming the isolates were correctly identified as E. multilocularis. Network analysis also correctly placed the isolates with other E. multilocularis. CONCLUSIONS: As a result of the discovery of E. multilocularis in an unusual intermediate host, which is considered to have the highest zoonotic potential, the result clearly demonstrated the necessity for expanded surveillance in the area.


Subject(s)
Cysts , Echinococcus multilocularis , Animals , Sheep/genetics , Echinococcus multilocularis/genetics , Phylogeny , China/epidemiology , DNA
8.
Parasitol Res ; 122(5): 1107-1126, 2023 May.
Article in English | MEDLINE | ID: mdl-36933066

ABSTRACT

The identification of additional Echinococcus granulosus sensu lato (s.l.) complex species/genotypes in recent years raises the possibility that there might be more variation among this species in China than is currently understood. The aim of this study was to explore intra- and inter-species variation and population structure of Echinococcus species isolated from sheep in three areas of Western China. Of the isolates, 317, 322, and 326 were successfully amplified and sequenced for cox1, nad1, and nad5 genes, respectively. BLAST analysis revealed that the majority of the isolates were E. granulosus s.s., and using the cox1, nad1, and nad5 genes, respectively, 17, 14, and 11 isolates corresponded to Elodea canadensis (genotype G6/G7). In the three study areas, G1 genotypes were the most prevalent. There were 233 mutation sites along with 129 parsimony informative sites. A transition/transversion ratio of 7.5, 8, and 3.25, respectively, for cox1, nad1, and nad5 genes was obtained. Every mitochondrial gene had intraspecific variations, which were represented in a star-like network with a major haplotype with observable mutations from other distant and minor haplotypes. The Tajima's D value was significantly negative in all populations, indicating a substantial divergence from neutrality and supporting the demographic expansion of E. granulosus s.s. in the study areas. The phylogeny inferred by the maximum likelihood (ML) method using nucleotide sequences of cox1-nad1-nad5 further confirmed their identity. The nodes assigned to the G1, G3, and G6 clades as well as the reference sequences utilized had maximal posterior probability values (1.00). In conclusion, our study confirms the existence of a significant major haplotype of E. granulosus s.s. where G1 is the predominant genotype causing of CE in both livestock and humans in China.


Subject(s)
Echinococcosis , Echinococcus granulosus , Animals , Humans , Sheep , Echinococcus granulosus/genetics , Tibet , Echinococcosis/epidemiology , Echinococcosis/veterinary , China , Genotype , Haplotypes , Mutation , Phylogeny , Genetic Variation
9.
Dalton Trans ; 51(45): 17466-17480, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36330864

ABSTRACT

Due to bimetallic MOFs (metal-organic frameworks) possessing diverse structure topologies and superior properties, herein, we used bimetallic ZIFs (zeolitic imidazole frameworks) of MOFs as precursors via the wet chemical and calcination method to fabricate zinc-embellished Co-Zn@NPC@MWCNT nanocomposites with porous conductive carbon-based networks The abundant carbon defects, zinc evaporation, and N-atom doping resulted in the emergence of dipolar/interface polarization, which is good for dielectric loss. The high porosity and large specific surface area were instrumental in the attenuation of multiple scattering and endowed the absorber with an excellent absorption performance. With merely 15 wt% filled loading and 3.187 mm thickness, the obtained composites under the optimized carbonization temperature (800 °C) exhibited double absorption peaks: the RLmin (minimum reflection loss) reached -76.18 dB@12.88 GHz and -33.09 dB@7.76 GHz, respectively. Moreover, a wide absorption bandwidth can be up to 6.56 GHz (7.2-13.76 GHz) with 3.0 mm thickness, distributed in three frequency bands: 20% of the C band, 100% of the X band, and 29.3% of the Ku band. In addition, the conductive network structure of composites was also beneficial for electromagnetic (EM)-wave absorption. An easy preparation process and low cost can further promote the commercial potential of our obtained bimetallic MOF-based material as an EM-wave absorber.

10.
Bioresour Technol ; 365: 128147, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36265789

ABSTRACT

In this study, it was investigated the nitrogen removal (NR) performance and potential mechanism for high C/N wastewater treatment under different dissolved oxygen (DO) concentrations. The results showed that DO concentration significantly affected the removal efficiency of total nitrogen (TN). When the initial DO increased from 0.5 to 1.5 mg/L, TN removal efficiency significantly increased from 65 % to 85 %. However, a further DO increase did not promote TN removal, and the NR was only 80 % with an initial DO concentration of 3.5 mg/L. The effect of DO concentration on NR was influenced by the combined action of functional bacteria and electron flow. Excessive DO concentration did not positively affect NR efficiency but promoted electron utilization and respiratory proliferation. When the DO concentration was 1.5 mg/L, more electrons generated by sodium acetate metabolism were transferred to the aerobic denitrification process, compared to when the DO concentration was 3.5 mg/L.


Subject(s)
Nitrification , Water Purification , Denitrification , Nitrogen/metabolism , Oxygen/metabolism , Wastewater , Heterotrophic Processes , Biofilms , Bioreactors/microbiology
11.
Environ Res ; 212(Pt D): 113464, 2022 09.
Article in English | MEDLINE | ID: mdl-35623442

ABSTRACT

The rapid start-up and advanced nutrient removal of simultaneous nitrification, endogenous denitrification, and phosphorus (P) removal aerobic granular sequence batch reactor (SNEDPR-AGSBR) is a challenge in the treatment of low carbon/nitrogen (C/N) domestic sewage. In this study, the feasibility of the SNEDPR-AGSBR process was examined in an exceedingly single-stage anaerobic/aerobic/anoxic sequencing batch reactor for treating low C/N ratio (3.3-5.0) domestic sewage. The initial results showed that accompanied by the rapid formation of the mature aerobic granular sludge based on the selection for slow-growing organisms, the rapid start-up (38 d) of the SNEDPR-AGSBR process was successfully realized. The formed mature aerobic granules had a dense structure with an average diameter of 667.7 µm and SVI30 of 30.0 mL/g. Two conditions for achieving the competitive balance between phosphorus-accumulating organisms/denitrifying phosphorus-accumulating organisms (PAOs/DPAOs) and glycogen accumulating organisms/denitrifying glycogen accumulating organisms (GAOs/DGAOs) were revealed by the long-term operation results. First, the dissolved oxygen (DO) concentration needed to be decreased to 3.0 mg/L in the aerobic phase, and then, the aerobic and anoxic phase hydraulic retention time (HRT) should be increased to 3.0 h. Notably, high removal efficiencies for NH4+-N (100%), total nitrogen (84.3%), and P (91.8%) of the SNEDPR-AGSBR process were stably obtained with a low C/N ratio of 3.9 domestic sewage. Simultaneous nitrification and endogenous denitrification (SNED) efficiency of 61.6% was achieved during a long-term operation of 142 days. Finally, microbial community analysis confirmed that GAOs (Defluviicoccus)/DGAOs (Candidatus_Competibacter) were responsible for the removal N, and PAOs (Acinetobacter, Candidatus_Accumulibacter, Hypomicrobinm)/DPAOs (Pseudomonas and Dechloromonas) ensured P removal.


Subject(s)
Nitrification , Phosphorus , Bioreactors , Carbon , Denitrification , Glycogen , Nitrogen , Nutrients , Sewage , Waste Disposal, Fluid/methods , Wastewater
12.
Front Microbiol ; 13: 806882, 2022.
Article in English | MEDLINE | ID: mdl-35356531

ABSTRACT

In the present study, a new species of the genus Moniliformis species is described taxonomically in the mitochondrial genomic context. The parasite was found in a plateau zokor captured in a high-altitude area of Xiahe County of Gansu Province, China. The mitochondrial (mt) genome length of this new species was 14,066 bp comprising 36 genes and 2 additional non-coding regions (SNR and LNR), without atp8. The molecular phylogeny inferred by the cytochrome c oxidase subunit I gene (cox1) and the18S ribosomal RNA gene (18S rDNA) sequences showed that the parasite as a sister species to other Moniliformis spp. and was named Moniliformis sp. XH-2020. The phylogeny of the concatenated amino acid sequences of the 12 protein-coding genes (PCGs) showed Moniliformis sp. XH-2020 in the same cluster as Macracanthorhynchus hirudinaceus and Oncicola luehei confirming the cox1 and 18S rDNA phylogenetic inference. In addition, the entire mt genome sequenced in this study represents the first in the order Moniliformida, providing molecular material for further study of the phylogeny of the class Archiacanthocephala. Moreover, the species of this class, use arthropods as intermediate hosts and mammals as definitive hosts and are agents of acanthocephaliasis, a zoonosis in humans. Therefore, this study not only expands the host range among potential wild animal hosts for Archiacanthocephalans which is of great ecological and evolutionary significance but also has important significance for the research of zoonotic parasitic diseases.

13.
Front Microbiol ; 13: 747484, 2022.
Article in English | MEDLINE | ID: mdl-35211102

ABSTRACT

The Cyclophyllidea comprises the most species-rich order of tapeworms (Platyhelminthes, Cestoda) and includes species with some of the most severe health impact on wildlife, livestock, and humans. We collected seven Cyclophyllidea specimens from rodents in Qinghai-Tibet Plateau (QTP) and its surrounding mountain systems, of which four specimens in QTP were unsequenced, representing "putative new species." Their complete mitochondrial (mt) genomes were sequenced and annotated. Phylogenetic reconstruction of partial 28S rDNA, cox1 and nad1 datasets provided high bootstrap frequency support for the categorization of three "putative new species," assigning each, respectively, to the genera Mesocestoides, Paranoplocephala, and Mosgovoyia, and revealing that some species and families in these three datasets, which contain 291 species from nine families, may require taxonomic revision. The partial 18S rDNA phylogeny of 29 species from Taeniidae provided high bootstrap frequency support for the categorization of the "putative new species" in the genus Hydatigera. Combined with the current investigation, the other three known Taeniidae species found in this study were Taenia caixuepengi, T. crassiceps, and Versteria mustelae and may be widely distributed in western China. Estimates of divergence time based on cox1 + nad1 fragment and mt protein-coding genes (PCGs) showed that the differentiation rate of Cyclophyllidea species was strongly associated with the rate of change in the biogeographic scenarios, likely caused by the uplift of the QTP; i.e., species differentiation of Cyclophyllidea might be driven by host-parasite co-evolution caused by the uplift of QTP. We propose an "out of QTP" hypothesis for the radiation of these cyclophyllidean tapeworms.

14.
Bioresour Technol ; 345: 126523, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34896530

ABSTRACT

Immobilized microorganism technology has attracted increasing attention for high concentration of microbes, low cell loss and high resistance to impact of environment. The microbial reduction of nitrate in the presence of sediment-based biochar (SBC) and nanoscale zero-valent iron (nZVI) was investigated in four different free systems. NZVI-SBC/bacteria system realized the best nitrate removal of 97.61% within 3 days through the synergistic effect of SBC and nZVI on denitrifying bacteria. Accumulation of nitrite and ammonium in nZVI-SBC/bacteria system also decreased. High-throughput sequencing results showed that the proportion of denitrifying bacteria in microbial community structure increased after adding nZVI-SBC. The performance of nitrate removal was then studied through PVA/SA-immobilization. Immobilized active pellets performed better nitrate removal (98.89%) and stronger tolerance under different conditions than the free bacterial cells. Overall, this study provided a promising approach by utilizing SBC and nZVI for the bio-remediation of nitrate-contaminated water in practical application.


Subject(s)
Nitrates , Water Pollutants, Chemical , Charcoal , Iron , Nitrogen Oxides , Water Pollutants, Chemical/analysis
15.
Transbound Emerg Dis ; 69(4): 2390-2397, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33991179

ABSTRACT

Taenia hydatigena is a widespread tapeworm of canids (primarily dogs) that causes cysticercosis in ruminants (domestic and wild) and manifests as depression and weakness secondary to various hepatic damages and sometimes mortality in young animals, although, commonly encountered cases are asymptomatic. In most taeniids, genetic polymorphism has been found to impact host preferences, distribution, disease epidemiology and management. Recently, we identified two main mitochondrial lineages of T. hydatigena in China, and here, we examined the mitochondrial nad4-nad5 genes of T. hydatigena from China, Nigeria, Pakistan and Sudan to assess the intraspecies variation of isolates from these countries and also the distribution of the distinct mitochondrial groups. In addition to China, haplogroup B variant was found in Pakistan, while haplogroup A demonstrated a widespread distribution. We then designed a PCR-restriction fragment length polymorphism (PCR-RFLP) assay using XmiI (AccI) and RsaI (AfaI) restriction enzymes to differentiate members of both haplogroups. This result provides more molecular evidence supporting the existence of distinct mitochondrial variants of T. hydatigena. The epidemiological significance of these different mitochondrial groups remains to be explored further. The current PCR-RFLP assay offers a useful molecular approach for investigating the genetic population structure of T. hydatigena in enzootic regions and in identifying/discriminating the different mitochondrial groups (haplogroups A and B).


Subject(s)
Cysticercosis , Dog Diseases , Taenia , Animals , Cysticercosis/epidemiology , Cysticercosis/veterinary , Dogs , Nucleic Acid Amplification Techniques/veterinary , Polymerase Chain Reaction/veterinary , Polymorphism, Restriction Fragment Length , Taenia/genetics
16.
Natl Sci Rev ; 8(6): nwaa200, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34691660

ABSTRACT

We report differential phase contrast scanning transmission electron microscopy (TEM) of nanoscale magnetic objects in Kagome ferromagnet Fe3Sn2 nanostructures. This technique can directly detect the deflection angle of a focused electron beam, thus allowing clear identification of the real magnetic structures of two magnetic objects including three-ring and complex arch-shaped vortices in Fe3Sn2 by Lorentz-TEM imaging. Numerical calculations based on real material-specific parameters well reproduced the experimental results, showing that the magnetic objects can be attributed to integral magnetizations of two types of complex three-dimensional (3D) magnetic bubbles with depth-modulated spin twisting. Magnetic configurations obtained using the high-resolution TEM are generally considered as two-dimensional (2D) magnetic objects previously. Our results imply the importance of the integral magnetizations of underestimated 3D magnetic structures in 2D TEM magnetic characterizations.

18.
Nat Nanotechnol ; 16(10): 1086-1091, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34341518

ABSTRACT

Topological charge Q classifies non-trivial spin textures and determines many of their characteristics. Most abundant are topological textures with |Q| ≤ 1, such as (anti)skyrmions, (anti)merons or (anti)vortices. In this study we created and imaged in real space magnetic skyrmion bundles, that is, multi-Q three-dimensional skyrmionic textures. These textures consist of a circular spin spiral that ties together a discrete number of skyrmion tubes. We observed skyrmion bundles with integer Q values up to 55. We show here that electric currents drive the collective motion of these particle-like textures similar to skyrmions. Bundles with Q ≠ 0 exhibit a skyrmion Hall effect with a Hall angle of ~62°, whereas Q = 0 bundles, the so-called skyrmioniums, propagate collinearly with respect to the current flow, that is, with a skyrmion Hall angle of ~0°. The experimental observation of multi-Q spin textures adds another member to the family of magnetic topological textures, which may serve in future spintronic devices.

19.
Adv Mater ; 33(33): e2101610, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34224181

ABSTRACT

Topological magnetic charge Q is a fundamental parameter that describes the magnetic domains and determines their intriguing electromagnetic properties. The ability to switch Q in a controlled way by electrical methods allows for flexible manipulation of electromagnetic behavior in future spintronic devices. Here, the room-temperature current-controlled topological magnetic transformations between Q = -1 skyrmions and Q = 0 stripes or type-II bubbles in a kagome crystal Fe3 Sn2 are reported. It is shown that reproducible and reversible skyrmion-bubble and skyrmion-stripe transformations can be achieved by tuning the density of nanosecond pulsed current of the order of ≈1010 A m-2 . Further numerical simulations suggest that spin-transfer torque combined with Joule thermal heating effects determine the current-induced topological magnetic transformations.

20.
Korean J Parasitol ; 59(2): 167-171, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33951773

ABSTRACT

Haemonchosis remains a significant problem in small ruminants. In this study, the assay of recombinase polymerase amplification (RPA) combined with the lateral flow strip (LFS-RPA) was established for the rapid detection of Haemonchus contortus in goat feces. The assay used primers and a probe targeting a specific sequence in the ITS-2 gene. We compared the performance of the LFS-RPA assay to a PCR assay. The LFS-RPA had a detection limit of 10 fg DNA, which was 10 times less compared to the lowest detection limit obtained by PCR. Out of 24 goat fecal samples, LFS-RPA assay detected H. contortus DNA with 95.8% sensitivity, compared to PCR, 79.1% sensitivity. LFS-RPA assay did not detect DNA from other related helminth species and demonstrated an adequate tolerance to inhibitors present in the goat feces. Taken together, our results suggest that LFS-RPA assay had a high diagnostic accuracy for the rapid detection of H. contortus and merits further evaluation.


Subject(s)
Feces/parasitology , Goat Diseases/parasitology , Haemonchiasis/veterinary , Haemonchus/isolation & purification , Nucleic Acid Amplification Techniques/methods , Animals , DNA Primers/genetics , Goat Diseases/diagnosis , Goats , Haemonchiasis/diagnosis , Haemonchiasis/parasitology , Haemonchus/classification , Haemonchus/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...